skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sensenig, Ryan L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fire and herbivory have profound effects on vegetation in savanna ecosystems, but little is known about how different herbivore groups influence vegetation dynamics after fire. We assessed the separate and combined effects of herbivory by cattle and wild meso‐ and megaherbivores on postfire herbaceous vegetation cover, species richness, and species turnover in a savanna ecosystem in central Kenya. We measured these vegetation attributes for five sampling periods (from 2013 to 2017) in prescribed burns and unburned areas located within a series of replicated long‐term herbivore exclosures that allow six different combinations of cattle and wild meso‐ and megaherbivores (elephants and giraffes). Vegetation cover (grasses, mainly) and species richness were initially reduced by burning but recovered by 15–27 months after fire, suggesting strong resilience to infrequent fire. However, the rates of recovery differed in plots accessible by different wild and domestic herbivore guilds. Wildlife (but not cattle) delayed postfire recovery of grasses, and the absence of wildlife (with or without cattle) delayed recovery of forbs. Herbivory by only cattle increased grass species richness in burned relative to unburned areas. Herbivory by cattle (with or without wildlife), however, reduced forb species richness in burned relative to unburned areas. Herbivory by wild ungulates (but not cattle) increased herbaceous species turnover in burned relative to unburned areas. Megaherbivores had negligible modifying effects on these results. This study demonstrates that savanna ecosystems are remarkably resilient to infrequent fires, but postfire grazing by cattle and wild mesoherbivores exerts different effects on recovery trajectories of herbaceous vegetation. 
    more » « less
  2. There has been a long-standing interest in understanding how interactions between fire and herbivory influence woody vegetation dynamics in savanna ecosystems. However, controlled, replicated experiments examining how different fire regimes interact with different herbivore groups are rare. We tested the effects of single and repeated burns, crossed with six replicated herbivore treatments, on the mortality and growth of woody vegetation in the Kenya Long-term Exclosure Experiment plots located in a semi-arid savanna system in central Kenya. Burned plots experienced higher tree mortality overall, but differences between burns and non-burns were only significant in plots excluding all wild herbivores and in plots accessible to megaherbivores. Cattle ameliorated the negative effects of repeat burns on tree mortality, perhaps by suppressing fuel load accumulation. Across all herbivore treatments, trees experienced a significant reduction in height within the first two years after fire (top-kill), which was followed by a gradual recovery. Saplings and coppices subjected to repeated burns regrew faster than those that were burned once, except in the presence of megaherbivores. This study highlights strong context-dependent interactions between fire and different herbivore groups, and extends previous approaches to understanding fire–herbivory interactions, which have tended to lump the effects of different herbivore groups, or study them separately. 
    more » « less
  3. null (Ed.)